Chelate-Assisted Pb Phytoextraction: Pb Availability, Uptake, and Translocation Constraints
ثبت نشده
چکیده
Chelates have been shown to enhance phytoextraction of Pb from contaminated soil. Mechanisms behind this phenomenon, however, remain largely unexplored. In this paper we examine chelate effect on Pb dissolution, plant Pb uptake, and internal plant Pb translocation. EDTA was found to be the most efficient in increasing watersoluble Pb concentration in our test soil. Unfortunately, PbEDTA is highly water-soluble and poses potential risks to groundwater in its application. In addition, it would not appear to be ideally suited for plant uptake and translocation based upon the relative water solubility of Pb-EDTA. We demonstrated that N,N′-di(2-hydroxybenzyl)ethylenediamine N,N′-diacetic acid (HBED) resulted in Zea mays root Pb content significantly higher than did EDTA, indicating that a chelate better than EDTA might be designed. Fortuitously, EDTA appears to increase overall plant transpiration, the driving force in phytoextraction of the Pb-chelate complex from soil. We also found that there was a significant increase in Pb uptake and translocation for corn transplanted into soil, then treated with EDTA, as compared to plants germinated and grown in Pb-contaminated soil to which EDTA was subsequently applied. These results demonstrate that significant improvement over current chelateassisted phytoextraction of Pb may be possible.
منابع مشابه
Assessment of the Efficacy of Chelate-Assisted Phytoextraction of Lead by Coffeeweed (Sesbania exaltata Raf.)
Lead (Pb), depending upon the reactant surface, pH, redox potential and other factors can bind tightly to the soil with a retention time of many centuries. Soil-metal interactions by sorption, precipitation and complexation processes, and differences between plant species in metal uptake efficiency, transport, and susceptibility make a general prediction of soil metal bioavailability and risks ...
متن کاملLead Accumulation by Tall Fescue (Festuca arundinacea Schreb.) Grown on a Lead-Contaminated Soil
Phytoextraction is gaining acceptance as a cost-effective and environmentally friendly phytoremediation strategy for reducing toxic metal levels from contaminated soils. Cognizant of the potential of this phytoremediation technique as an alternative to expensive engineering-based remediation technologies, experiments were conducted to evaluate the suitability of some plants as phytoextraction s...
متن کاملBioavailability and Uptake of Lead by Coffeeweed (Sesbania exaltata Raf.)
Lead (Pb) is recognized as one of the most pervasive environmental health concerns in the industrialized world. While there has been a substantial reduction in the use of Pb in gasoline, water pipes, and Pb-based residential paint, residual Pb from their use is still in the environment and constitutes an important source of Pb in the atmosphere, water, and soil. Soil acts as a sink for these an...
متن کاملPhytoextraction of lead, zinc and cadmium from soil by selected plants
The Pb, Zn and Cd phytoextraction potential of 14 different plants was assessed in a chelate induced phytoextraction experiment. In the used soil heavy metals mainly reside in carbonate, organic matter, and residual soil fractions. The addition of a chelate, 5 mmol/kg ethylenediamine-tetracetic acid (EDTA), increased the proportion of phytoavailable Pb, Zn and Cd in the soil (dissolved in soil ...
متن کاملکاهش خطر آبشویی فلز-کلات به آبهای زیرزمینی در خاکهای آلوده به سرب با استفاده از Festuca ovina L.
The present study was conducted to increase phytoextraction efficiency of Festuca ovina L. in lead contaminated soil in the EDTA-assisted (0, 1.5, 3, 1.5+1.5, 3+3, 6 mmol kg−1), assess the best time of plant harvesting to increase Pb uptake and method of EDTA application to reduce Pb leaching risk. The results revealed that the greatest Pb uptake was observed in 3EDTA treatment. Therefore...
متن کامل